Google Cloud Migration Strategies: Complete Enterprise Guide

Tyler Maginnis | February 17, 2024

Google CloudGCPCloud MigrationData AnalyticsMachine LearningKubernetes

Need Professional Cloud Migration?

Get expert assistance with your cloud migration implementation and management. Tyler on Tech Louisville provides priority support for Louisville businesses.

Same-day service available for Louisville area

Google Cloud Migration Strategies: Complete Enterprise Guide

Overview

Google Cloud Platform (GCP) offers innovative solutions for cloud migration with industry-leading data analytics, machine learning capabilities, and open-source technologies. This guide provides comprehensive strategies for planning and executing successful migrations to Google Cloud.

Table of Contents

  1. Why Google Cloud Platform
  2. Google Cloud Migration Framework
  3. Migration Assessment and Planning
  4. Google Cloud Migration Tools
  5. Architecture Best Practices
  6. Security and Compliance
  7. Cost Optimization
  8. Migration Execution
  9. Post-Migration Success

Why Google Cloud Platform

Unique Advantages

  • Data and Analytics Leadership: BigQuery, Dataflow, and advanced analytics
  • AI/ML Innovation: Pre-trained models and custom ML capabilities
  • Open Source Commitment: Kubernetes, Istio, and open standards
  • Network Performance: Google's private global network
  • Sustainability: Carbon-neutral operations and renewable energy

GCP Differentiators

Feature Benefit
Live Migration Zero downtime VM maintenance
Per-Second Billing Cost efficiency for variable workloads
Custom Machine Types Right-size instances precisely
Preemptible VMs Up to 80% cost savings
Global Load Balancing Single anycast IP worldwide

Google Cloud Migration Framework

Migration Phases

1. Assess

  • Inventory applications and infrastructure
  • Analyze dependencies
  • Evaluate migration complexity
  • Define success criteria

2. Pilot

  • Select representative workloads
  • Test migration approach
  • Validate tools and processes
  • Refine strategy

3. Move

  • Execute migration waves
  • Monitor progress
  • Address issues promptly
  • Maintain business continuity

4. Optimize

  • Improve performance
  • Reduce costs
  • Enhance security
  • Adopt cloud-native services

Google Cloud Adoption Framework

# Framework Components
strategy:
  business_objectives:
    - Digital transformation
    - Cost optimization
    - Innovation enablement
    - Global scalability

  success_metrics:
    - Migration velocity
    - Cost reduction percentage
    - Performance improvement
    - User satisfaction

people:
  roles:
    - Cloud Architect
    - Migration Engineer
    - Security Specialist
    - FinOps Analyst

  training:
    - Google Cloud Fundamentals
    - Professional certifications
    - Hands-on labs
    - Architecture workshops

process:
  governance:
    - Resource hierarchy
    - Policy enforcement
    - Cost controls
    - Security standards

  operations:
    - Monitoring strategy
    - Incident management
    - Change control
    - Continuous improvement

technology:
  foundation:
    - Network architecture
    - Identity management
    - Security controls
    - Automation tools

Migration Assessment and Planning

Discovery and Assessment Tools

Cloud Migration Assessment

# Install migration assessment tool
gsutil cp gs://solutions-public-assets/bqmigration/BQMigrationAssessment.zip .
unzip BQMigrationAssessment.zip

# Run infrastructure assessment
python assess_infrastructure.py \
  --project-id=my-project \
  --output-dir=./assessment-results

Dependency Mapping

# Python script for application dependency analysis
import networkx as nx
from google.cloud import compute_v1

def map_dependencies(project_id):
    """Map VM dependencies based on network connections"""

    instance_client = compute_v1.InstancesClient()
    network_graph = nx.DiGraph()

    # Get all instances
    for zone in compute_v1.ZonesClient().list(project=project_id):
        for instance in instance_client.list(project=project_id, zone=zone.name):
            network_graph.add_node(instance.name)

            # Analyze network connections
            for interface in instance.network_interfaces:
                # Add edges based on firewall rules and connections
                analyze_connections(network_graph, instance, interface)

    return network_graph

def analyze_connections(graph, instance, interface):
    """Analyze network connections between instances"""
    # Implementation for connection analysis
    pass

Migration Readiness Assessment

Workload Categorization

Category Characteristics Migration Strategy GCP Services
Stateless Web Apps No persistent state Rehost or Replatform App Engine, Cloud Run
Databases Relational/NoSQL Migrate or Modernize Cloud SQL, Spanner, Firestore
Big Data Large-scale analytics Modernize BigQuery, Dataflow
Legacy Systems Monolithic, outdated Replatform or Replace Compute Engine, Anthos
Containers Microservices Rehost GKE, Cloud Run

Cost Analysis

TCO Calculator Configuration

// TCO calculation parameters
const tcoParams = {
  onPremise: {
    servers: {
      count: 100,
      averageCost: 5000,
      refreshCycle: 4,
      maintenanceCost: 0.15 // 15% of hardware cost
    },
    dataCenter: {
      rackSpace: 10,
      powerPerRack: 5, // kW
      coolingMultiplier: 1.5,
      costPerKwh: 0.10
    },
    personnel: {
      admins: 5,
      averageSalary: 100000,
      overhead: 1.3
    }
  },
  googleCloud: {
    compute: {
      instanceType: 'n2-standard-4',
      count: 80,
      sustainedUseDiscount: 0.30,
      committedUseDiscount: 0.57
    },
    storage: {
      standardStorage: 1000, // TB
      nearlineStorage: 5000, // TB
      archivalStorage: 10000 // TB
    },
    network: {
      egressTraffic: 10, // TB/month
      loadBalancing: true,
      cdn: true
    }
  }
};

Google Cloud Migration Tools

Migrate for Compute Engine

Installation and Setup

# Create migration manager
gcloud compute instances create migration-manager \
  --zone=us-central1-a \
  --machine-type=n1-standard-4 \
  --image-family=debian-10 \
  --image-project=debian-cloud \
  --scopes=cloud-platform

# Install Migrate for Compute Engine
curl -O https://storage.googleapis.com/migrate-for-compute-engine/v5.0/migrate-installer.sh
chmod +x migrate-installer.sh
./migrate-installer.sh

Migration Wave Configuration

# migration-wave.yaml
apiVersion: migrate.google.com/v1
kind: MigrationWave
metadata:
  name: wave-1-web-tier
spec:
  sources:
    - type: vmware
      datacenter: dc1
      cluster: web-cluster
  targets:
    - project: my-project
      zone: us-central1-a
      network: projects/my-project/global/networks/prod-vpc
      subnet: projects/my-project/regions/us-central1/subnetworks/web-subnet
  vms:
    - name: web-server-01
      targetInstanceType: n2-standard-4
      targetBootDiskType: pd-ssd
    - name: web-server-02
      targetInstanceType: n2-standard-4
      targetBootDiskType: pd-ssd

Database Migration Service

Cloud SQL Migration

-- Pre-migration checks
SELECT 
  @@version AS mysql_version,
  @@innodb_version AS innodb_version,
  @@character_set_server AS charset,
  @@collation_server AS collation;

-- Check for migration blockers
SELECT 
  table_schema,
  table_name,
  engine
FROM information_schema.tables
WHERE engine NOT IN ('InnoDB', 'MyISAM');

Database Migration Configuration

# Create Database Migration Service job
gcloud database-migration migration-jobs create mysql-migration \
  --region=us-central1 \
  --type=CONTINUOUS \
  --source=projects/PROJECT_ID/locations/us-central1/sources/mysql-source \
  --destination=projects/PROJECT_ID/locations/us-central1/destinations/cloudsql-destination

Transfer Service

Large-scale Data Transfer

from google.cloud import storage_transfer_v1

def create_transfer_job():
    """Create a transfer job from on-premises to GCS"""

    client = storage_transfer_v1.StorageTransferServiceClient()

    transfer_job = {
        'name': 'transferJobs/on-prem-to-gcs',
        'description': 'Migrate on-premises data to Cloud Storage',
        'project_id': 'my-project',
        'transfer_spec': {
            'source_agent_pool_name': 'projects/my-project/agentPools/on-prem-pool',
            'gcs_data_sink': {
                'bucket_name': 'migration-data-bucket',
                'path': 'migrated-data/'
            },
            'transfer_options': {
                'overwrite_objects_already_existing_in_sink': False,
                'delete_objects_from_source_after_transfer': False
            }
        },
        'schedule': {
            'start_time': '2024-01-25T00:00:00Z',
            'repeat_interval': '86400s'  # Daily
        }
    }

    return client.create_transfer_job(
        request={'transfer_job': transfer_job}
    )

Architecture Best Practices

Network Architecture

VPC Design

# Terraform VPC configuration
resource "google_compute_network" "prod_vpc" {
  name                    = "production-vpc"
  auto_create_subnetworks = false
  routing_mode           = "REGIONAL"
}

resource "google_compute_subnetwork" "web_subnet" {
  name          = "web-tier-subnet"
  ip_cidr_range = "10.1.0.0/24"
  region        = "us-central1"
  network       = google_compute_network.prod_vpc.id

  secondary_ip_range {
    range_name    = "gke-pods"
    ip_cidr_range = "10.10.0.0/20"
  }

  secondary_ip_range {
    range_name    = "gke-services"
    ip_cidr_range = "10.20.0.0/20"
  }

  private_ip_google_access = true
}

resource "google_compute_firewall" "allow_internal" {
  name    = "allow-internal"
  network = google_compute_network.prod_vpc.name

  allow {
    protocol = "tcp"
    ports    = ["0-65535"]
  }

  allow {
    protocol = "udp"
    ports    = ["0-65535"]
  }

  allow {
    protocol = "icmp"
  }

  source_ranges = ["10.0.0.0/8"]
}

Hybrid Connectivity

# Cloud VPN configuration
apiVersion: compute.cnrm.cloud.google.com/v1beta1
kind: ComputeVPNGateway
metadata:
  name: on-prem-gateway
spec:
  region: us-central1
  networkRef:
    name: production-vpc
---
apiVersion: compute.cnrm.cloud.google.com/v1beta1
kind: ComputeVPNTunnel
metadata:
  name: on-prem-tunnel-1
spec:
  vpnGatewayRef:
    name: on-prem-gateway
  peerIp: "203.0.113.1"
  sharedSecret:
    valueFrom:
      secretKeyRef:
        name: vpn-secret
        key: shared-secret
  ikeVersion: 2

High Availability Design

Multi-Region Architecture

# Global load balancer configuration
from google.cloud import compute_v1

def create_global_load_balancer():
    """Create a global HTTP(S) load balancer"""

    # Backend configuration
    backend_service = {
        'name': 'global-web-backend',
        'protocol': 'HTTP',
        'port_name': 'http',
        'timeout_sec': 30,
        'health_checks': ['global-health-check'],
        'backends': [
            {
                'group': 'us-central1-ig',
                'balancing_mode': 'UTILIZATION',
                'max_utilization': 0.8
            },
            {
                'group': 'europe-west1-ig',
                'balancing_mode': 'UTILIZATION',
                'max_utilization': 0.8
            }
        ],
        'cdn_policy': {
            'cache_mode': 'CACHE_ALL_STATIC',
            'default_ttl': 3600,
            'max_ttl': 86400
        }
    }

    # URL map configuration
    url_map = {
        'name': 'global-web-map',
        'default_service': 'global-web-backend',
        'host_rules': [
            {
                'hosts': ['www.example.com'],
                'path_matcher': 'path-matcher-1'
            }
        ],
        'path_matchers': [
            {
                'name': 'path-matcher-1',
                'default_service': 'global-web-backend',
                'path_rules': [
                    {
                        'paths': ['/api/*'],
                        'service': 'api-backend-service'
                    }
                ]
            }
        ]
    }

    return backend_service, url_map

Container Platform (GKE)

GKE Cluster Configuration

# GKE cluster configuration
apiVersion: container.cnrm.cloud.google.com/v1beta1
kind: ContainerCluster
metadata:
  name: production-gke
spec:
  location: us-central1
  initialNodeCount: 3
  nodeConfig:
    machineType: n2-standard-4
    diskSizeGb: 100
    diskType: pd-ssd
    oauthScopes:
      - https://www.googleapis.com/auth/cloud-platform
    metadata:
      disable-legacy-endpoints: "true"
  addonsConfig:
    horizontalPodAutoscaling:
      disabled: false
    httpLoadBalancing:
      disabled: false
    networkPolicyConfig:
      disabled: false
  networkPolicy:
    enabled: true
  ipAllocationPolicy:
    useIpAliases: true
    clusterSecondaryRangeName: gke-pods
    servicesSecondaryRangeName: gke-services
  workloadIdentity:
    workloadPool: my-project.svc.id.goog

Security and Compliance

Identity and Access Management

Organization Policy

# Terraform organization policies
resource "google_organization_policy" "require_shielded_vm" {
  org_id     = var.org_id
  constraint = "compute.requireShieldedVm"

  boolean_policy {
    enforced = true
  }
}

resource "google_organization_policy" "allowed_locations" {
  org_id     = var.org_id
  constraint = "gcp.resourceLocations"

  list_policy {
    allow {
      values = ["us-central1", "us-east1", "europe-west1"]
    }
  }
}

Service Account Best Practices

from google.oauth2 import service_account
from google.cloud import iam

def create_least_privilege_sa():
    """Create service account with minimal permissions"""

    iam_client = iam.IAMClient()

    # Create service account
    service_account = {
        'account_id': 'app-service-account',
        'display_name': 'Application Service Account',
        'description': 'Service account for application with least privilege'
    }

    sa = iam_client.create_service_account(
        name=f'projects/{project_id}',
        service_account=service_account
    )

    # Grant minimal roles
    policy = {
        'bindings': [
            {
                'role': 'roles/cloudsql.client',
                'members': [f'serviceAccount:{sa.email}']
            },
            {
                'role': 'roles/storage.objectViewer',
                'members': [f'serviceAccount:{sa.email}'],
                'condition': {
                    'title': 'Only specific bucket',
                    'expression': 'resource.name.startsWith("projects/_/buckets/app-data")'
                }
            }
        ]
    }

    return sa, policy

Data Protection

Encryption Configuration

# Customer-Managed Encryption Keys (CMEK)
apiVersion: cloudkms.cnrm.cloud.google.com/v1beta1
kind: CloudKMSKeyRing
metadata:
  name: migration-keyring
spec:
  location: us-central1
---
apiVersion: cloudkms.cnrm.cloud.google.com/v1beta1
kind: CloudKMSCryptoKey
metadata:
  name: disk-encryption-key
spec:
  keyRingRef:
    name: migration-keyring
  purpose: ENCRYPT_DECRYPT
  rotationPeriod: 7776000s # 90 days
  versionTemplate:
    algorithm: GOOGLE_SYMMETRIC_ENCRYPTION

DLP Implementation

from google.cloud import dlp_v2

def configure_dlp_inspection():
    """Configure DLP for sensitive data inspection"""

    dlp_client = dlp_v2.DlpServiceClient()

    # Define inspection configuration
    inspect_config = {
        'info_types': [
            {'name': 'CREDIT_CARD_NUMBER'},
            {'name': 'US_SOCIAL_SECURITY_NUMBER'},
            {'name': 'EMAIL_ADDRESS'}
        ],
        'min_likelihood': dlp_v2.Likelihood.LIKELY,
        'include_quote': True,
        'limits': {
            'max_findings_per_request': 100
        }
    }

    # Create inspection template
    template = {
        'display_name': 'Migration DLP Template',
        'description': 'Template for scanning migrated data',
        'inspect_config': inspect_config
    }

    parent = f"projects/{project_id}/locations/global"

    return dlp_client.create_inspect_template(
        request={
            'parent': parent,
            'inspect_template': template
        }
    )

Compliance Frameworks

Compliance Automation

# Security Command Center setup
gcloud scc sources create migration-security-source \
  --display-name="Migration Security Scanner" \
  --organization=${ORG_ID}

# Enable compliance scanning
gcloud scc custom-modules create pci-compliance-check \
  --organization=${ORG_ID} \
  --display-name="PCI DSS Compliance Check" \
  --module-type=CUSTOM_MODULE_TYPE_DETECTOR \
  --custom-config-from-file=pci-compliance-rules.yaml

Cost Optimization

Resource Optimization

Committed Use Discounts

def calculate_cud_savings():
    """Calculate savings from Committed Use Discounts"""

    # Current usage
    current_usage = {
        'n2-standard-4': 50,
        'n2-standard-8': 25,
        'pd-ssd': 10000  # GB
    }

    # Pricing (example rates)
    on_demand_prices = {
        'n2-standard-4': 0.1892,  # per hour
        'n2-standard-8': 0.3784,  # per hour
        'pd-ssd': 0.17  # per GB per month
    }

    # CUD discounts
    cud_discount = 0.57  # 57% discount for 3-year commitment

    # Calculate monthly costs
    monthly_on_demand = 0
    monthly_cud = 0

    for resource, quantity in current_usage.items():
        if resource == 'pd-ssd':
            monthly_on_demand += quantity * on_demand_prices[resource]
            monthly_cud += quantity * on_demand_prices[resource] * (1 - cud_discount)
        else:
            hours_per_month = 730
            monthly_on_demand += quantity * on_demand_prices[resource] * hours_per_month
            monthly_cud += quantity * on_demand_prices[resource] * hours_per_month * (1 - cud_discount)

    monthly_savings = monthly_on_demand - monthly_cud
    annual_savings = monthly_savings * 12

    return {
        'monthly_on_demand': monthly_on_demand,
        'monthly_cud': monthly_cud,
        'monthly_savings': monthly_savings,
        'annual_savings': annual_savings,
        'savings_percentage': (monthly_savings / monthly_on_demand) * 100
    }

Autoscaling Configuration

# Horizontal Pod Autoscaler
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
  name: web-app-hpa
spec:
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: web-app
  minReplicas: 2
  maxReplicas: 100
  metrics:
  - type: Resource
    resource:
      name: cpu
      target:
        type: Utilization
        averageUtilization: 70
  - type: Resource
    resource:
      name: memory
      target:
        type: Utilization
        averageUtilization: 80
  - type: External
    external:
      metric:
        name: pubsub_queue_depth
        selector:
          matchLabels:
            queue: work-queue
      target:
        type: Value
        value: 100

BigQuery Cost Optimization

Partitioning and Clustering

-- Create partitioned and clustered table
CREATE TABLE dataset.optimized_logs
PARTITION BY DATE(timestamp)
CLUSTER BY user_id, event_type
AS
SELECT * FROM dataset.raw_logs;

-- Query optimization example
-- Bad: Scans entire table
SELECT COUNT(*) 
FROM dataset.raw_logs
WHERE DATE(timestamp) = '2024-01-25';

-- Good: Uses partition pruning
SELECT COUNT(*)
FROM dataset.optimized_logs
WHERE DATE(timestamp) = '2024-01-25';

-- Set up scheduled queries for cost control
CREATE OR REPLACE SCHEDULED QUERY
  'daily_aggregation'
OPTIONS (
  query = """
    SELECT 
      DATE(timestamp) as date,
      COUNT(*) as events,
      COUNT(DISTINCT user_id) as unique_users
    FROM dataset.optimized_logs
    WHERE DATE(timestamp) = CURRENT_DATE() - 1
    GROUP BY date
  """,
  destination_dataset_id = 'aggregated_data',
  write_disposition = 'WRITE_APPEND',
  schedule = 'every day 02:00'
);

Migration Execution

Phased Migration Approach

Wave 1: Non-Critical Systems

#!/bin/bash
# Migration script for Wave 1

# Set variables
PROJECT_ID="my-project"
SOURCE_ZONE="on-prem-dc1"
TARGET_ZONE="us-central1-a"

# Migrate test environments
echo "Starting Wave 1 migration..."

# Create snapshots
for vm in $(gcloud compute instances list --zones=$SOURCE_ZONE --format="value(name)" --filter="labels.environment=test"); do
  echo "Creating snapshot for $vm"
  gcloud compute disks snapshot $vm --zone=$SOURCE_ZONE --snapshot-names=$vm-migration-snapshot
done

# Create instances from snapshots
for snapshot in $(gcloud compute snapshots list --format="value(name)" --filter="name~migration-snapshot"); do
  vm_name=$(echo $snapshot | sed 's/-migration-snapshot//')
  echo "Creating instance $vm_name in GCP"

  gcloud compute instances create $vm_name \
    --zone=$TARGET_ZONE \
    --machine-type=n2-standard-4 \
    --source-snapshot=$snapshot \
    --boot-disk-size=100GB \
    --boot-disk-type=pd-ssd \
    --network-tier=PREMIUM
done

Wave 2: Business Applications

# Automated migration for business applications
from google.cloud import compute_v1
import time

class MigrationOrchestrator:
    def __init__(self, project_id):
        self.project_id = project_id
        self.compute_client = compute_v1.InstancesClient()

    def migrate_application_stack(self, app_name, vms):
        """Migrate an entire application stack"""

        print(f"Starting migration for {app_name}")

        # Pre-migration checks
        if not self.validate_prerequisites(vms):
            raise Exception("Prerequisites not met")

        # Create migration plan
        migration_plan = self.create_migration_plan(vms)

        # Execute migration
        for step in migration_plan:
            print(f"Executing: {step['description']}")

            if step['type'] == 'database':
                self.migrate_database(step['source'], step['target'])
            elif step['type'] == 'application':
                self.migrate_application(step['source'], step['target'])
            elif step['type'] == 'load_balancer':
                self.update_load_balancer(step['config'])

            # Validate step
            if not self.validate_step(step):
                self.rollback(step)
                raise Exception(f"Migration failed at step: {step['description']}")

        print(f"Migration completed for {app_name}")

    def migrate_database(self, source, target):
        """Migrate database with minimal downtime"""
        # Implementation for database migration
        pass

Cutover Strategy

Blue-Green Deployment

# Kubernetes blue-green deployment
apiVersion: v1
kind: Service
metadata:
  name: app-service
spec:
  selector:
    app: myapp
    version: green  # Switch between blue/green
  ports:
  - port: 80
    targetPort: 8080
---
# Blue deployment (current)
apiVersion: apps/v1
kind: Deployment
metadata:
  name: myapp-blue
spec:
  replicas: 3
  selector:
    matchLabels:
      app: myapp
      version: blue
  template:
    metadata:
      labels:
        app: myapp
        version: blue
    spec:
      containers:
      - name: app
        image: gcr.io/my-project/myapp:v1.0
        ports:
        - containerPort: 8080
---
# Green deployment (new)
apiVersion: apps/v1
kind: Deployment
metadata:
  name: myapp-green
spec:
  replicas: 3
  selector:
    matchLabels:
      app: myapp
      version: green
  template:
    metadata:
      labels:
        app: myapp
        version: green
    spec:
      containers:
      - name: app
        image: gcr.io/my-project/myapp:v2.0
        ports:
        - containerPort: 8080

Post-Migration Success

Monitoring and Observability

Cloud Monitoring Setup

from google.cloud import monitoring_v3
from google.cloud.monitoring_dashboard import v1

def create_migration_dashboard():
    """Create comprehensive monitoring dashboard"""

    client = v1.DashboardsServiceClient()
    project_name = f"projects/{project_id}"

    dashboard = {
        "displayName": "Migration Success Dashboard",
        "mosaicLayout": {
            "columns": 12,
            "tiles": [
                {
                    "width": 6,
                    "height": 4,
                    "widget": {
                        "title": "VM CPU Utilization",
                        "xyChart": {
                            "dataSets": [{
                                "timeSeriesQuery": {
                                    "timeSeriesFilter": {
                                        "filter": 'metric.type="compute.googleapis.com/instance/cpu/utilization"',
                                        "aggregation": {
                                            "alignmentPeriod": "60s",
                                            "perSeriesAligner": "ALIGN_MEAN"
                                        }
                                    }
                                }
                            }]
                        }
                    }
                },
                {
                    "xPos": 6,
                    "width": 6,
                    "height": 4,
                    "widget": {
                        "title": "Application Response Time",
                        "xyChart": {
                            "dataSets": [{
                                "timeSeriesQuery": {
                                    "timeSeriesFilter": {
                                        "filter": 'metric.type="loadbalancing.googleapis.com/https/backend_latencies"',
                                        "aggregation": {
                                            "alignmentPeriod": "60s",
                                            "perSeriesAligner": "ALIGN_PERCENTILE_95"
                                        }
                                    }
                                }
                            }]
                        }
                    }
                }
            ]
        }
    }

    return client.create_dashboard(parent=project_name, dashboard=dashboard)

Logging and Analysis

from google.cloud import logging
from google.cloud import bigquery

def analyze_migration_logs():
    """Analyze migration logs for insights"""

    # Set up logging client
    logging_client = logging.Client()

    # Export logs to BigQuery
    sink_name = "migration-logs-sink"
    destination = f"bigquery.googleapis.com/projects/{project_id}/datasets/migration_logs"

    sink = logging_client.sink(
        sink_name,
        filter_='resource.type="gce_instance" OR resource.type="k8s_container"',
        destination=destination
    )

    if not sink.exists():
        sink.create()

    # Query logs for analysis
    bq_client = bigquery.Client()

    query = """
    SELECT
      timestamp,
      resource.labels.instance_id as instance,
      jsonPayload.message as message,
      severity
    FROM `migration_logs.syslog_*`
    WHERE timestamp > TIMESTAMP_SUB(CURRENT_TIMESTAMP(), INTERVAL 1 DAY)
      AND severity IN ('ERROR', 'CRITICAL')
    ORDER BY timestamp DESC
    LIMIT 100
    """

    return bq_client.query(query)

Performance Optimization

Application Performance Tuning

# Optimize GKE workloads
apiVersion: v1
kind: ConfigMap
metadata:
  name: app-optimization
data:
  JAVA_OPTS: "-Xmx2g -Xms2g -XX:+UseG1GC -XX:MaxGCPauseMillis=200"
  DB_POOL_SIZE: "20"
  CACHE_ENABLED: "true"
  COMPRESSION_ENABLED: "true"
---
apiVersion: apps/v1
kind: Deployment
metadata:
  name: optimized-app
spec:
  template:
    spec:
      containers:
      - name: app
        resources:
          requests:
            memory: "2Gi"
            cpu: "1000m"
          limits:
            memory: "4Gi"
            cpu: "2000m"
        envFrom:
        - configMapRef:
            name: app-optimization
        readinessProbe:
          httpGet:
            path: /health
            port: 8080
          initialDelaySeconds: 30
          periodSeconds: 10
        livenessProbe:
          httpGet:
            path: /health
            port: 8080
          initialDelaySeconds: 60
          periodSeconds: 30

Continuous Improvement

FinOps Implementation

class FinOpsAnalyzer:
    def __init__(self, project_id):
        self.project_id = project_id
        self.bq_client = bigquery.Client()

    def analyze_cost_trends(self):
        """Analyze cost trends and provide recommendations"""

        query = """
        WITH daily_costs AS (
          SELECT
            service.description as service,
            sku.description as sku,
            DATE(usage_start_time) as usage_date,
            SUM(cost) as daily_cost
          FROM `{project_id}.billing.gcp_billing_export_v1_{billing_account_id}`
          WHERE DATE(usage_start_time) >= DATE_SUB(CURRENT_DATE(), INTERVAL 30 DAY)
          GROUP BY 1, 2, 3
        ),
        cost_trends AS (
          SELECT
            service,
            sku,
            usage_date,
            daily_cost,
            AVG(daily_cost) OVER (
              PARTITION BY service, sku 
              ORDER BY usage_date 
              ROWS BETWEEN 6 PRECEDING AND CURRENT ROW
            ) as rolling_avg
          FROM daily_costs
        )
        SELECT
          service,
          sku,
          usage_date,
          daily_cost,
          rolling_avg,
          (daily_cost - rolling_avg) / rolling_avg * 100 as pct_change
        FROM cost_trends
        WHERE usage_date = CURRENT_DATE() - 1
          AND ABS((daily_cost - rolling_avg) / rolling_avg) > 0.2
        ORDER BY daily_cost DESC
        """

        results = self.bq_client.query(query.format(
            project_id=self.project_id,
            billing_account_id=self.billing_account_id
        ))

        recommendations = []
        for row in results:
            if row.pct_change > 20:
                recommendations.append({
                    'service': row.service,
                    'sku': row.sku,
                    'action': 'investigate_spike',
                    'daily_cost': row.daily_cost,
                    'change_pct': row.pct_change
                })

        return recommendations

Success Metrics and KPIs

Migration Success Dashboard

-- BigQuery dashboard queries
-- Migration velocity
SELECT
  DATE(migration_completed) as migration_date,
  COUNT(DISTINCT vm_name) as vms_migrated,
  AVG(migration_duration_hours) as avg_duration,
  SUM(CASE WHEN status = 'SUCCESS' THEN 1 ELSE 0 END) / COUNT(*) * 100 as success_rate
FROM `migration_tracking.vm_migrations`
WHERE migration_completed >= DATE_SUB(CURRENT_DATE(), INTERVAL 30 DAY)
GROUP BY migration_date
ORDER BY migration_date DESC;

-- Cost optimization
SELECT
  DATE(usage_date) as date,
  SUM(on_premise_cost) as on_prem_cost,
  SUM(gcp_cost) as cloud_cost,
  (SUM(on_premise_cost) - SUM(gcp_cost)) / SUM(on_premise_cost) * 100 as savings_pct
FROM `cost_analysis.daily_comparison`
WHERE usage_date >= DATE_SUB(CURRENT_DATE(), INTERVAL 90 DAY)
GROUP BY date
ORDER BY date DESC;

-- Performance metrics
SELECT
  application_name,
  AVG(response_time_before) as avg_response_before_ms,
  AVG(response_time_after) as avg_response_after_ms,
  (AVG(response_time_before) - AVG(response_time_after)) / AVG(response_time_before) * 100 as improvement_pct
FROM `performance_metrics.application_comparison`
GROUP BY application_name
HAVING improvement_pct > 0
ORDER BY improvement_pct DESC;

Conclusion

Google Cloud Platform provides a comprehensive set of tools and services for successful cloud migration. The key to success lies in:

  1. Thorough Assessment: Understanding your current environment and requirements
  2. Strategic Planning: Choosing the right migration approach for each workload
  3. Leveraging GCP Tools: Using native migration and modernization tools
  4. Security First: Implementing strong security and compliance measures
  5. Cost Optimization: Taking advantage of GCP's flexible pricing models
  6. Continuous Improvement: Monitoring and optimizing post-migration

By following this guide and leveraging Google Cloud's innovative technologies, organizations can achieve successful migrations that deliver improved performance, reduced costs, and enhanced agility.

For expert assistance with your Google Cloud migration journey, contact Tyler on Tech Louisville for customized solutions and hands-on support.