Google Cloud Migration Strategies: Complete Enterprise Guide
Overview
Google Cloud Platform (GCP) offers innovative solutions for cloud migration with industry-leading data analytics, machine learning capabilities, and open-source technologies. This guide provides comprehensive strategies for planning and executing successful migrations to Google Cloud.
Table of Contents
- Why Google Cloud Platform
- Google Cloud Migration Framework
- Migration Assessment and Planning
- Google Cloud Migration Tools
- Architecture Best Practices
- Security and Compliance
- Cost Optimization
- Migration Execution
- Post-Migration Success
Why Google Cloud Platform
Unique Advantages
- Data and Analytics Leadership: BigQuery, Dataflow, and advanced analytics
- AI/ML Innovation: Pre-trained models and custom ML capabilities
- Open Source Commitment: Kubernetes, Istio, and open standards
- Network Performance: Google's private global network
- Sustainability: Carbon-neutral operations and renewable energy
GCP Differentiators
Feature | Benefit |
---|---|
Live Migration | Zero downtime VM maintenance |
Per-Second Billing | Cost efficiency for variable workloads |
Custom Machine Types | Right-size instances precisely |
Preemptible VMs | Up to 80% cost savings |
Global Load Balancing | Single anycast IP worldwide |
Google Cloud Migration Framework
Migration Phases
1. Assess
- Inventory applications and infrastructure
- Analyze dependencies
- Evaluate migration complexity
- Define success criteria
2. Pilot
- Select representative workloads
- Test migration approach
- Validate tools and processes
- Refine strategy
3. Move
- Execute migration waves
- Monitor progress
- Address issues promptly
- Maintain business continuity
4. Optimize
- Improve performance
- Reduce costs
- Enhance security
- Adopt cloud-native services
Google Cloud Adoption Framework
# Framework Components
strategy:
business_objectives:
- Digital transformation
- Cost optimization
- Innovation enablement
- Global scalability
success_metrics:
- Migration velocity
- Cost reduction percentage
- Performance improvement
- User satisfaction
people:
roles:
- Cloud Architect
- Migration Engineer
- Security Specialist
- FinOps Analyst
training:
- Google Cloud Fundamentals
- Professional certifications
- Hands-on labs
- Architecture workshops
process:
governance:
- Resource hierarchy
- Policy enforcement
- Cost controls
- Security standards
operations:
- Monitoring strategy
- Incident management
- Change control
- Continuous improvement
technology:
foundation:
- Network architecture
- Identity management
- Security controls
- Automation tools
Migration Assessment and Planning
Discovery and Assessment Tools
Cloud Migration Assessment
# Install migration assessment tool
gsutil cp gs://solutions-public-assets/bqmigration/BQMigrationAssessment.zip .
unzip BQMigrationAssessment.zip
# Run infrastructure assessment
python assess_infrastructure.py \
--project-id=my-project \
--output-dir=./assessment-results
Dependency Mapping
# Python script for application dependency analysis
import networkx as nx
from google.cloud import compute_v1
def map_dependencies(project_id):
"""Map VM dependencies based on network connections"""
instance_client = compute_v1.InstancesClient()
network_graph = nx.DiGraph()
# Get all instances
for zone in compute_v1.ZonesClient().list(project=project_id):
for instance in instance_client.list(project=project_id, zone=zone.name):
network_graph.add_node(instance.name)
# Analyze network connections
for interface in instance.network_interfaces:
# Add edges based on firewall rules and connections
analyze_connections(network_graph, instance, interface)
return network_graph
def analyze_connections(graph, instance, interface):
"""Analyze network connections between instances"""
# Implementation for connection analysis
pass
Migration Readiness Assessment
Workload Categorization
Category | Characteristics | Migration Strategy | GCP Services |
---|---|---|---|
Stateless Web Apps | No persistent state | Rehost or Replatform | App Engine, Cloud Run |
Databases | Relational/NoSQL | Migrate or Modernize | Cloud SQL, Spanner, Firestore |
Big Data | Large-scale analytics | Modernize | BigQuery, Dataflow |
Legacy Systems | Monolithic, outdated | Replatform or Replace | Compute Engine, Anthos |
Containers | Microservices | Rehost | GKE, Cloud Run |
Cost Analysis
TCO Calculator Configuration
// TCO calculation parameters
const tcoParams = {
onPremise: {
servers: {
count: 100,
averageCost: 5000,
refreshCycle: 4,
maintenanceCost: 0.15 // 15% of hardware cost
},
dataCenter: {
rackSpace: 10,
powerPerRack: 5, // kW
coolingMultiplier: 1.5,
costPerKwh: 0.10
},
personnel: {
admins: 5,
averageSalary: 100000,
overhead: 1.3
}
},
googleCloud: {
compute: {
instanceType: 'n2-standard-4',
count: 80,
sustainedUseDiscount: 0.30,
committedUseDiscount: 0.57
},
storage: {
standardStorage: 1000, // TB
nearlineStorage: 5000, // TB
archivalStorage: 10000 // TB
},
network: {
egressTraffic: 10, // TB/month
loadBalancing: true,
cdn: true
}
}
};
Google Cloud Migration Tools
Migrate for Compute Engine
Installation and Setup
# Create migration manager
gcloud compute instances create migration-manager \
--zone=us-central1-a \
--machine-type=n1-standard-4 \
--image-family=debian-10 \
--image-project=debian-cloud \
--scopes=cloud-platform
# Install Migrate for Compute Engine
curl -O https://storage.googleapis.com/migrate-for-compute-engine/v5.0/migrate-installer.sh
chmod +x migrate-installer.sh
./migrate-installer.sh
Migration Wave Configuration
# migration-wave.yaml
apiVersion: migrate.google.com/v1
kind: MigrationWave
metadata:
name: wave-1-web-tier
spec:
sources:
- type: vmware
datacenter: dc1
cluster: web-cluster
targets:
- project: my-project
zone: us-central1-a
network: projects/my-project/global/networks/prod-vpc
subnet: projects/my-project/regions/us-central1/subnetworks/web-subnet
vms:
- name: web-server-01
targetInstanceType: n2-standard-4
targetBootDiskType: pd-ssd
- name: web-server-02
targetInstanceType: n2-standard-4
targetBootDiskType: pd-ssd
Database Migration Service
Cloud SQL Migration
-- Pre-migration checks
SELECT
@@version AS mysql_version,
@@innodb_version AS innodb_version,
@@character_set_server AS charset,
@@collation_server AS collation;
-- Check for migration blockers
SELECT
table_schema,
table_name,
engine
FROM information_schema.tables
WHERE engine NOT IN ('InnoDB', 'MyISAM');
Database Migration Configuration
# Create Database Migration Service job
gcloud database-migration migration-jobs create mysql-migration \
--region=us-central1 \
--type=CONTINUOUS \
--source=projects/PROJECT_ID/locations/us-central1/sources/mysql-source \
--destination=projects/PROJECT_ID/locations/us-central1/destinations/cloudsql-destination
Transfer Service
Large-scale Data Transfer
from google.cloud import storage_transfer_v1
def create_transfer_job():
"""Create a transfer job from on-premises to GCS"""
client = storage_transfer_v1.StorageTransferServiceClient()
transfer_job = {
'name': 'transferJobs/on-prem-to-gcs',
'description': 'Migrate on-premises data to Cloud Storage',
'project_id': 'my-project',
'transfer_spec': {
'source_agent_pool_name': 'projects/my-project/agentPools/on-prem-pool',
'gcs_data_sink': {
'bucket_name': 'migration-data-bucket',
'path': 'migrated-data/'
},
'transfer_options': {
'overwrite_objects_already_existing_in_sink': False,
'delete_objects_from_source_after_transfer': False
}
},
'schedule': {
'start_time': '2024-01-25T00:00:00Z',
'repeat_interval': '86400s' # Daily
}
}
return client.create_transfer_job(
request={'transfer_job': transfer_job}
)
Architecture Best Practices
Network Architecture
VPC Design
# Terraform VPC configuration
resource "google_compute_network" "prod_vpc" {
name = "production-vpc"
auto_create_subnetworks = false
routing_mode = "REGIONAL"
}
resource "google_compute_subnetwork" "web_subnet" {
name = "web-tier-subnet"
ip_cidr_range = "10.1.0.0/24"
region = "us-central1"
network = google_compute_network.prod_vpc.id
secondary_ip_range {
range_name = "gke-pods"
ip_cidr_range = "10.10.0.0/20"
}
secondary_ip_range {
range_name = "gke-services"
ip_cidr_range = "10.20.0.0/20"
}
private_ip_google_access = true
}
resource "google_compute_firewall" "allow_internal" {
name = "allow-internal"
network = google_compute_network.prod_vpc.name
allow {
protocol = "tcp"
ports = ["0-65535"]
}
allow {
protocol = "udp"
ports = ["0-65535"]
}
allow {
protocol = "icmp"
}
source_ranges = ["10.0.0.0/8"]
}
Hybrid Connectivity
# Cloud VPN configuration
apiVersion: compute.cnrm.cloud.google.com/v1beta1
kind: ComputeVPNGateway
metadata:
name: on-prem-gateway
spec:
region: us-central1
networkRef:
name: production-vpc
---
apiVersion: compute.cnrm.cloud.google.com/v1beta1
kind: ComputeVPNTunnel
metadata:
name: on-prem-tunnel-1
spec:
vpnGatewayRef:
name: on-prem-gateway
peerIp: "203.0.113.1"
sharedSecret:
valueFrom:
secretKeyRef:
name: vpn-secret
key: shared-secret
ikeVersion: 2
High Availability Design
Multi-Region Architecture
# Global load balancer configuration
from google.cloud import compute_v1
def create_global_load_balancer():
"""Create a global HTTP(S) load balancer"""
# Backend configuration
backend_service = {
'name': 'global-web-backend',
'protocol': 'HTTP',
'port_name': 'http',
'timeout_sec': 30,
'health_checks': ['global-health-check'],
'backends': [
{
'group': 'us-central1-ig',
'balancing_mode': 'UTILIZATION',
'max_utilization': 0.8
},
{
'group': 'europe-west1-ig',
'balancing_mode': 'UTILIZATION',
'max_utilization': 0.8
}
],
'cdn_policy': {
'cache_mode': 'CACHE_ALL_STATIC',
'default_ttl': 3600,
'max_ttl': 86400
}
}
# URL map configuration
url_map = {
'name': 'global-web-map',
'default_service': 'global-web-backend',
'host_rules': [
{
'hosts': ['www.example.com'],
'path_matcher': 'path-matcher-1'
}
],
'path_matchers': [
{
'name': 'path-matcher-1',
'default_service': 'global-web-backend',
'path_rules': [
{
'paths': ['/api/*'],
'service': 'api-backend-service'
}
]
}
]
}
return backend_service, url_map
Container Platform (GKE)
GKE Cluster Configuration
# GKE cluster configuration
apiVersion: container.cnrm.cloud.google.com/v1beta1
kind: ContainerCluster
metadata:
name: production-gke
spec:
location: us-central1
initialNodeCount: 3
nodeConfig:
machineType: n2-standard-4
diskSizeGb: 100
diskType: pd-ssd
oauthScopes:
- https://www.googleapis.com/auth/cloud-platform
metadata:
disable-legacy-endpoints: "true"
addonsConfig:
horizontalPodAutoscaling:
disabled: false
httpLoadBalancing:
disabled: false
networkPolicyConfig:
disabled: false
networkPolicy:
enabled: true
ipAllocationPolicy:
useIpAliases: true
clusterSecondaryRangeName: gke-pods
servicesSecondaryRangeName: gke-services
workloadIdentity:
workloadPool: my-project.svc.id.goog
Security and Compliance
Identity and Access Management
Organization Policy
# Terraform organization policies
resource "google_organization_policy" "require_shielded_vm" {
org_id = var.org_id
constraint = "compute.requireShieldedVm"
boolean_policy {
enforced = true
}
}
resource "google_organization_policy" "allowed_locations" {
org_id = var.org_id
constraint = "gcp.resourceLocations"
list_policy {
allow {
values = ["us-central1", "us-east1", "europe-west1"]
}
}
}
Service Account Best Practices
from google.oauth2 import service_account
from google.cloud import iam
def create_least_privilege_sa():
"""Create service account with minimal permissions"""
iam_client = iam.IAMClient()
# Create service account
service_account = {
'account_id': 'app-service-account',
'display_name': 'Application Service Account',
'description': 'Service account for application with least privilege'
}
sa = iam_client.create_service_account(
name=f'projects/{project_id}',
service_account=service_account
)
# Grant minimal roles
policy = {
'bindings': [
{
'role': 'roles/cloudsql.client',
'members': [f'serviceAccount:{sa.email}']
},
{
'role': 'roles/storage.objectViewer',
'members': [f'serviceAccount:{sa.email}'],
'condition': {
'title': 'Only specific bucket',
'expression': 'resource.name.startsWith("projects/_/buckets/app-data")'
}
}
]
}
return sa, policy
Data Protection
Encryption Configuration
# Customer-Managed Encryption Keys (CMEK)
apiVersion: cloudkms.cnrm.cloud.google.com/v1beta1
kind: CloudKMSKeyRing
metadata:
name: migration-keyring
spec:
location: us-central1
---
apiVersion: cloudkms.cnrm.cloud.google.com/v1beta1
kind: CloudKMSCryptoKey
metadata:
name: disk-encryption-key
spec:
keyRingRef:
name: migration-keyring
purpose: ENCRYPT_DECRYPT
rotationPeriod: 7776000s # 90 days
versionTemplate:
algorithm: GOOGLE_SYMMETRIC_ENCRYPTION
DLP Implementation
from google.cloud import dlp_v2
def configure_dlp_inspection():
"""Configure DLP for sensitive data inspection"""
dlp_client = dlp_v2.DlpServiceClient()
# Define inspection configuration
inspect_config = {
'info_types': [
{'name': 'CREDIT_CARD_NUMBER'},
{'name': 'US_SOCIAL_SECURITY_NUMBER'},
{'name': 'EMAIL_ADDRESS'}
],
'min_likelihood': dlp_v2.Likelihood.LIKELY,
'include_quote': True,
'limits': {
'max_findings_per_request': 100
}
}
# Create inspection template
template = {
'display_name': 'Migration DLP Template',
'description': 'Template for scanning migrated data',
'inspect_config': inspect_config
}
parent = f"projects/{project_id}/locations/global"
return dlp_client.create_inspect_template(
request={
'parent': parent,
'inspect_template': template
}
)
Compliance Frameworks
Compliance Automation
# Security Command Center setup
gcloud scc sources create migration-security-source \
--display-name="Migration Security Scanner" \
--organization=${ORG_ID}
# Enable compliance scanning
gcloud scc custom-modules create pci-compliance-check \
--organization=${ORG_ID} \
--display-name="PCI DSS Compliance Check" \
--module-type=CUSTOM_MODULE_TYPE_DETECTOR \
--custom-config-from-file=pci-compliance-rules.yaml
Cost Optimization
Resource Optimization
Committed Use Discounts
def calculate_cud_savings():
"""Calculate savings from Committed Use Discounts"""
# Current usage
current_usage = {
'n2-standard-4': 50,
'n2-standard-8': 25,
'pd-ssd': 10000 # GB
}
# Pricing (example rates)
on_demand_prices = {
'n2-standard-4': 0.1892, # per hour
'n2-standard-8': 0.3784, # per hour
'pd-ssd': 0.17 # per GB per month
}
# CUD discounts
cud_discount = 0.57 # 57% discount for 3-year commitment
# Calculate monthly costs
monthly_on_demand = 0
monthly_cud = 0
for resource, quantity in current_usage.items():
if resource == 'pd-ssd':
monthly_on_demand += quantity * on_demand_prices[resource]
monthly_cud += quantity * on_demand_prices[resource] * (1 - cud_discount)
else:
hours_per_month = 730
monthly_on_demand += quantity * on_demand_prices[resource] * hours_per_month
monthly_cud += quantity * on_demand_prices[resource] * hours_per_month * (1 - cud_discount)
monthly_savings = monthly_on_demand - monthly_cud
annual_savings = monthly_savings * 12
return {
'monthly_on_demand': monthly_on_demand,
'monthly_cud': monthly_cud,
'monthly_savings': monthly_savings,
'annual_savings': annual_savings,
'savings_percentage': (monthly_savings / monthly_on_demand) * 100
}
Autoscaling Configuration
# Horizontal Pod Autoscaler
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: web-app-hpa
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: web-app
minReplicas: 2
maxReplicas: 100
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
- type: Resource
resource:
name: memory
target:
type: Utilization
averageUtilization: 80
- type: External
external:
metric:
name: pubsub_queue_depth
selector:
matchLabels:
queue: work-queue
target:
type: Value
value: 100
BigQuery Cost Optimization
Partitioning and Clustering
-- Create partitioned and clustered table
CREATE TABLE dataset.optimized_logs
PARTITION BY DATE(timestamp)
CLUSTER BY user_id, event_type
AS
SELECT * FROM dataset.raw_logs;
-- Query optimization example
-- Bad: Scans entire table
SELECT COUNT(*)
FROM dataset.raw_logs
WHERE DATE(timestamp) = '2024-01-25';
-- Good: Uses partition pruning
SELECT COUNT(*)
FROM dataset.optimized_logs
WHERE DATE(timestamp) = '2024-01-25';
-- Set up scheduled queries for cost control
CREATE OR REPLACE SCHEDULED QUERY
'daily_aggregation'
OPTIONS (
query = """
SELECT
DATE(timestamp) as date,
COUNT(*) as events,
COUNT(DISTINCT user_id) as unique_users
FROM dataset.optimized_logs
WHERE DATE(timestamp) = CURRENT_DATE() - 1
GROUP BY date
""",
destination_dataset_id = 'aggregated_data',
write_disposition = 'WRITE_APPEND',
schedule = 'every day 02:00'
);
Migration Execution
Phased Migration Approach
Wave 1: Non-Critical Systems
#!/bin/bash
# Migration script for Wave 1
# Set variables
PROJECT_ID="my-project"
SOURCE_ZONE="on-prem-dc1"
TARGET_ZONE="us-central1-a"
# Migrate test environments
echo "Starting Wave 1 migration..."
# Create snapshots
for vm in $(gcloud compute instances list --zones=$SOURCE_ZONE --format="value(name)" --filter="labels.environment=test"); do
echo "Creating snapshot for $vm"
gcloud compute disks snapshot $vm --zone=$SOURCE_ZONE --snapshot-names=$vm-migration-snapshot
done
# Create instances from snapshots
for snapshot in $(gcloud compute snapshots list --format="value(name)" --filter="name~migration-snapshot"); do
vm_name=$(echo $snapshot | sed 's/-migration-snapshot//')
echo "Creating instance $vm_name in GCP"
gcloud compute instances create $vm_name \
--zone=$TARGET_ZONE \
--machine-type=n2-standard-4 \
--source-snapshot=$snapshot \
--boot-disk-size=100GB \
--boot-disk-type=pd-ssd \
--network-tier=PREMIUM
done
Wave 2: Business Applications
# Automated migration for business applications
from google.cloud import compute_v1
import time
class MigrationOrchestrator:
def __init__(self, project_id):
self.project_id = project_id
self.compute_client = compute_v1.InstancesClient()
def migrate_application_stack(self, app_name, vms):
"""Migrate an entire application stack"""
print(f"Starting migration for {app_name}")
# Pre-migration checks
if not self.validate_prerequisites(vms):
raise Exception("Prerequisites not met")
# Create migration plan
migration_plan = self.create_migration_plan(vms)
# Execute migration
for step in migration_plan:
print(f"Executing: {step['description']}")
if step['type'] == 'database':
self.migrate_database(step['source'], step['target'])
elif step['type'] == 'application':
self.migrate_application(step['source'], step['target'])
elif step['type'] == 'load_balancer':
self.update_load_balancer(step['config'])
# Validate step
if not self.validate_step(step):
self.rollback(step)
raise Exception(f"Migration failed at step: {step['description']}")
print(f"Migration completed for {app_name}")
def migrate_database(self, source, target):
"""Migrate database with minimal downtime"""
# Implementation for database migration
pass
Cutover Strategy
Blue-Green Deployment
# Kubernetes blue-green deployment
apiVersion: v1
kind: Service
metadata:
name: app-service
spec:
selector:
app: myapp
version: green # Switch between blue/green
ports:
- port: 80
targetPort: 8080
---
# Blue deployment (current)
apiVersion: apps/v1
kind: Deployment
metadata:
name: myapp-blue
spec:
replicas: 3
selector:
matchLabels:
app: myapp
version: blue
template:
metadata:
labels:
app: myapp
version: blue
spec:
containers:
- name: app
image: gcr.io/my-project/myapp:v1.0
ports:
- containerPort: 8080
---
# Green deployment (new)
apiVersion: apps/v1
kind: Deployment
metadata:
name: myapp-green
spec:
replicas: 3
selector:
matchLabels:
app: myapp
version: green
template:
metadata:
labels:
app: myapp
version: green
spec:
containers:
- name: app
image: gcr.io/my-project/myapp:v2.0
ports:
- containerPort: 8080
Post-Migration Success
Monitoring and Observability
Cloud Monitoring Setup
from google.cloud import monitoring_v3
from google.cloud.monitoring_dashboard import v1
def create_migration_dashboard():
"""Create comprehensive monitoring dashboard"""
client = v1.DashboardsServiceClient()
project_name = f"projects/{project_id}"
dashboard = {
"displayName": "Migration Success Dashboard",
"mosaicLayout": {
"columns": 12,
"tiles": [
{
"width": 6,
"height": 4,
"widget": {
"title": "VM CPU Utilization",
"xyChart": {
"dataSets": [{
"timeSeriesQuery": {
"timeSeriesFilter": {
"filter": 'metric.type="compute.googleapis.com/instance/cpu/utilization"',
"aggregation": {
"alignmentPeriod": "60s",
"perSeriesAligner": "ALIGN_MEAN"
}
}
}
}]
}
}
},
{
"xPos": 6,
"width": 6,
"height": 4,
"widget": {
"title": "Application Response Time",
"xyChart": {
"dataSets": [{
"timeSeriesQuery": {
"timeSeriesFilter": {
"filter": 'metric.type="loadbalancing.googleapis.com/https/backend_latencies"',
"aggregation": {
"alignmentPeriod": "60s",
"perSeriesAligner": "ALIGN_PERCENTILE_95"
}
}
}
}]
}
}
}
]
}
}
return client.create_dashboard(parent=project_name, dashboard=dashboard)
Logging and Analysis
from google.cloud import logging
from google.cloud import bigquery
def analyze_migration_logs():
"""Analyze migration logs for insights"""
# Set up logging client
logging_client = logging.Client()
# Export logs to BigQuery
sink_name = "migration-logs-sink"
destination = f"bigquery.googleapis.com/projects/{project_id}/datasets/migration_logs"
sink = logging_client.sink(
sink_name,
filter_='resource.type="gce_instance" OR resource.type="k8s_container"',
destination=destination
)
if not sink.exists():
sink.create()
# Query logs for analysis
bq_client = bigquery.Client()
query = """
SELECT
timestamp,
resource.labels.instance_id as instance,
jsonPayload.message as message,
severity
FROM `migration_logs.syslog_*`
WHERE timestamp > TIMESTAMP_SUB(CURRENT_TIMESTAMP(), INTERVAL 1 DAY)
AND severity IN ('ERROR', 'CRITICAL')
ORDER BY timestamp DESC
LIMIT 100
"""
return bq_client.query(query)
Performance Optimization
Application Performance Tuning
# Optimize GKE workloads
apiVersion: v1
kind: ConfigMap
metadata:
name: app-optimization
data:
JAVA_OPTS: "-Xmx2g -Xms2g -XX:+UseG1GC -XX:MaxGCPauseMillis=200"
DB_POOL_SIZE: "20"
CACHE_ENABLED: "true"
COMPRESSION_ENABLED: "true"
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: optimized-app
spec:
template:
spec:
containers:
- name: app
resources:
requests:
memory: "2Gi"
cpu: "1000m"
limits:
memory: "4Gi"
cpu: "2000m"
envFrom:
- configMapRef:
name: app-optimization
readinessProbe:
httpGet:
path: /health
port: 8080
initialDelaySeconds: 30
periodSeconds: 10
livenessProbe:
httpGet:
path: /health
port: 8080
initialDelaySeconds: 60
periodSeconds: 30
Continuous Improvement
FinOps Implementation
class FinOpsAnalyzer:
def __init__(self, project_id):
self.project_id = project_id
self.bq_client = bigquery.Client()
def analyze_cost_trends(self):
"""Analyze cost trends and provide recommendations"""
query = """
WITH daily_costs AS (
SELECT
service.description as service,
sku.description as sku,
DATE(usage_start_time) as usage_date,
SUM(cost) as daily_cost
FROM `{project_id}.billing.gcp_billing_export_v1_{billing_account_id}`
WHERE DATE(usage_start_time) >= DATE_SUB(CURRENT_DATE(), INTERVAL 30 DAY)
GROUP BY 1, 2, 3
),
cost_trends AS (
SELECT
service,
sku,
usage_date,
daily_cost,
AVG(daily_cost) OVER (
PARTITION BY service, sku
ORDER BY usage_date
ROWS BETWEEN 6 PRECEDING AND CURRENT ROW
) as rolling_avg
FROM daily_costs
)
SELECT
service,
sku,
usage_date,
daily_cost,
rolling_avg,
(daily_cost - rolling_avg) / rolling_avg * 100 as pct_change
FROM cost_trends
WHERE usage_date = CURRENT_DATE() - 1
AND ABS((daily_cost - rolling_avg) / rolling_avg) > 0.2
ORDER BY daily_cost DESC
"""
results = self.bq_client.query(query.format(
project_id=self.project_id,
billing_account_id=self.billing_account_id
))
recommendations = []
for row in results:
if row.pct_change > 20:
recommendations.append({
'service': row.service,
'sku': row.sku,
'action': 'investigate_spike',
'daily_cost': row.daily_cost,
'change_pct': row.pct_change
})
return recommendations
Success Metrics and KPIs
Migration Success Dashboard
-- BigQuery dashboard queries
-- Migration velocity
SELECT
DATE(migration_completed) as migration_date,
COUNT(DISTINCT vm_name) as vms_migrated,
AVG(migration_duration_hours) as avg_duration,
SUM(CASE WHEN status = 'SUCCESS' THEN 1 ELSE 0 END) / COUNT(*) * 100 as success_rate
FROM `migration_tracking.vm_migrations`
WHERE migration_completed >= DATE_SUB(CURRENT_DATE(), INTERVAL 30 DAY)
GROUP BY migration_date
ORDER BY migration_date DESC;
-- Cost optimization
SELECT
DATE(usage_date) as date,
SUM(on_premise_cost) as on_prem_cost,
SUM(gcp_cost) as cloud_cost,
(SUM(on_premise_cost) - SUM(gcp_cost)) / SUM(on_premise_cost) * 100 as savings_pct
FROM `cost_analysis.daily_comparison`
WHERE usage_date >= DATE_SUB(CURRENT_DATE(), INTERVAL 90 DAY)
GROUP BY date
ORDER BY date DESC;
-- Performance metrics
SELECT
application_name,
AVG(response_time_before) as avg_response_before_ms,
AVG(response_time_after) as avg_response_after_ms,
(AVG(response_time_before) - AVG(response_time_after)) / AVG(response_time_before) * 100 as improvement_pct
FROM `performance_metrics.application_comparison`
GROUP BY application_name
HAVING improvement_pct > 0
ORDER BY improvement_pct DESC;
Conclusion
Google Cloud Platform provides a comprehensive set of tools and services for successful cloud migration. The key to success lies in:
- Thorough Assessment: Understanding your current environment and requirements
- Strategic Planning: Choosing the right migration approach for each workload
- Leveraging GCP Tools: Using native migration and modernization tools
- Security First: Implementing strong security and compliance measures
- Cost Optimization: Taking advantage of GCP's flexible pricing models
- Continuous Improvement: Monitoring and optimizing post-migration
By following this guide and leveraging Google Cloud's innovative technologies, organizations can achieve successful migrations that deliver improved performance, reduced costs, and enhanced agility.
For expert assistance with your Google Cloud migration journey, contact Tyler on Tech Louisville for customized solutions and hands-on support.